The Application of Distributed Optical Sensing for Monitoring Support in Underground Excavations

MASc. thesis submitted to the department of Geological Sciences and Geological Engineering

Bradley J. Forbes

RMC

CMR

Co-supervisors: Dr. Nicholas Vlachopoulos & Dr. Mark S. Diederichs

Presentation Overview

- Introduction:
- Motivation for research
- Background:
- Underground support
- Conventional monitoring
- Optical strain sensing
- Development of the optical technique
- Verification and demonstration through a laboratory testing scheme
- Major findings and conclusions of research

Motivation for Research

Pasar Rakyat MRT Station, Kuala Lampur, Malaysia

Long-wall mining method, Colorado, U.S.

- Larger and longer tunnelling projects to accommodate resource and public transportation
- Deeper underground mining and nuclear waste repositories

Support in Underground Excavations RMC CMR

- Support systems are often composed of many individual support elements
- Installed in order to maintain excavation stability and maintain project specific guidelines
- This research has focused specifically on:
 - Forepoles
 - Rock bolts

Example support system

Support members installed longitudinally ahead of the excavation face

• Support members installed longitudinally ahead of the excavation face

Loading Mechanisms

Forepole Loading

- Continuous multi-span beam under distributed bending
- Load is transferred longitudinally along the support element to the varying foundation arrangement, including:
 - Two steel set (or shotcrete) abutments
 - A steel set and the ground ahead of the excavation face (and shotcrete at the face)
- May provide a component of axial resistance ahead of the excavation face

Loading Mechanisms

Rock Bolt Loading

- Secure gravity, structurally, and stress driven failures surround the excavation
- Primarily considered to undergo axial loading
- Depending on the ground conditions may be loaded in shear

Conventional Monitoring

Modified after Serbousek & Signer (1987)

Rock Bolt Monitoring

- Electrical resistive strain gauges:
 - discrete measurement points
 - a majority of the bolt length is left unmonitored
- Long base-length inductive strain gauges
 - captures load across entire length
 - separates the bolt into <u>discrete</u> <u>zones</u>

Forepole Monitoring

- Chain inclinometer (2 meter lengths)
 - strain derived from deflection

Modified after Spearing et al. (2013)

A Continuous Solution?

- Support may not be loaded in a continuous fashion in situ
- The ability to capture localized loading is contingent on the positioning and number of discrete gauges
- Limited by costs and manufacturing difficulties
- Is there solution that overcomes limitations of conventional instrumentation?

- One single mode optical fiber is used as the sensing length and lead
- Optical fiber is 250 micrometers in diameter (ideal for placing along a given support element)
- Light is the transmission signal:
 - Immune to electromagnetic and radio interference
 - Inherently intrinsically safe
- Glass transmission medium implies the instrumentation will not degrade or require recalibration over time (i.e. zero-shift)

Fiber Bragg Gratings

- Bragg grating structure: fixed index modulation inscribed into the fiber core from high-intensity UV exposure
- Bragg grating will reflect a component of the incident wavelength spectrum
- Strain will change the local refractive index and periodicity of the Bragg grating

 Reflected wavelength will shift linearly with strain

RMC

Modified after FBGS (2014)

CMR

Fiber Bragg Gratings

- Bragg grating structure: fixed index modulation inscribed into the fiber core from high-intensity UV exposure
- Bragg grating will reflect a component of the incident wavelength spectrum
- Strain will change the local refractive index and periodicity of the Bragg grating
- Reflected wavelength will shift linearly with strain

Modified after FBGS (2014)

Variation of strain and temperature Pump laser United after Zhang & Wu (2012) Variation of strain and temperature Continuous wave Continuous wave Probe laser Receiver

Distributed Optical Sensing (DOS)

- Monitors back scattered components of light
- Uses a standard low-cost optical fiber
- <u>Brillouin Optical Time Domain</u> <u>Reflectometry (BOTDR):</u>
 - measures Brillouin frequency shift along the optical fiber
 - frequency shift arises from interaction with acoustic waves
 - shifts linearly with strain

Modified after Fuji Technical Research Inc.

Distributed Optical Sensing (DOS)

- Monitors back scattered components of light
- Uses a standard low-cost optical fiber
- <u>Rayleigh Optical Frequency Domain</u> <u>Reflectometry (ROFDR):</u>
 - measures Rayleigh scatter
 - scatter arises from random fluctuations in the refractive index
 - strain alters the local refractive index along the fiber

Technique	FBG (Micron Optics Inc., 2012 & FBGS, 2015)	BOTDA (Omnisens, 2014)	ROFDR (Luna Innovation Inc., 2014)
Max. sensing length	> 1000 m	> 1000 m	< 40 m
Measurement repeatability	± 0.1 -10 $\mu\epsilon$	±1με	±5 με
Spacing of measurement (i.e. spatial resolution)	10 cm (practically)	0.5 – 1 m	1.25 mm
Max. number of measurement points	10 – 20 (practically)	> 1000	> 1000

- Rayleigh OFDR is the most applicable option for monitoring support elements
- The technology remains untested in the geomechanics industry

Optical Sensing Unit

Rock Bolt Experimentation

- Tested using #6 Grade 60 rebar specimens
- Diametrically opposed grooves machined along the lengths of rebar
- Optical instrumentation was embedded and encapsulated using epoxy resin

Forepole Experimentation

- Tests conducted on ASTM A53 steel pipe:
 - 114mm OD, 6.02mm wall
 - 21.3mm OD, 2.77mm wall
- Optical instrumentation embedded into 2mm machined groove, as well as surface mounted
- Multiple epoxy resins and adhesives experimented with to bond the instrumentation

Test Configurations

Symmetric Point Load Bending

Axial Pull-Out (Short Embedded Length)

RMC #

CMR

Strain Profile of Rebar Element

Strain Profile of Rebar Element

Euler Bernoulli Strain Profile

Strain Profile of Forepole Element

Strain Profile of Forepole Element

Strain Profile of Model Forepole

Strain Profile of Forepole

- Need to determine if this is an inherent issue with the sensing <u>technique</u> or <u>actual response</u>?
- Approach:
 - Surface mount the optical sensor using a less brittle adhesive
 - Conduct the bending test at multiple support spans (i.e. scale issues?)
 - Compare against traditional strain techniques

Strain gauge

- Optical sensor surface mounted using a metal bonding adhesive
- Adjust support span spacing from 0.5m to 3.0m

Strain Profile: 0.66m Support Spacing

Strain Profile: 1.90m Support Spacing

Summary of Symmetric Bending

- DOS verified against conventional strain gauges
- Strain profiles become linear with increased support spacing.
- Metal bonding adhesive is the preferred bonding compound.
- Use the small diameter model forepole to avoid large loading apparatus for other loading mechanisms.

Axial Pull-out Testing

- 200mm section of the rebar resin/steel pipe grouted into a 31mm preformed and reamed borehole
- Optical instrumentation looped at the end of the grouted section

Axial Loading Difficulties

- Inherently difficult to apply a purely axial load.
- Initial seating, straightening of the rebar, and misalignment will cause a component of bending.
- Spherical washers and wedges were used to reduce bending.
- Can take an average of the strain distribution along opposing sides to remove bending component.

CMR

Axial Pull-out Testing: Rebar

Grouted Section of rebar at 70kN

- Periodic disturbances match with the spacing of rebar ribs.
- Corresponds to the anchoring effect of rebar ribs within the resin grout.

- Rebar resin grouted into three concrete blocks separated by thin vertical planes
- Outer two blocks are fixed in the vertical direction
- Uniformly distributed load is applied vertically onto the centre block

40cm

In Situ Operation

- Successfully implemented the optical technique with rock bolts in operating coal mines
- The sensors and interrogator survived harsh installation procedures and operation
- Capability of the technique best demonstrated at the laboratory scale

DOS instrumented bolt installed in the roof of a coal mine

- An optical sensing technique has been developed for rock bolt and forepole support members (laboratory and *in situ*).
- The technique was demonstrated to capture expected loading mechanisms of support at an unparalleled resolution and accuracy.
- Low-cost per sensor offers an economical solution for monitoring a cluster of instrumented support specimens.
- The optical solution can be realized as a novel monitoring tool with the capability to "see" and "sense" into the ground ahead of the excavation face

- An optical sensing technique has been developed for rock bolt and forepole support members (laboratory and *in situ*).
- The technique was demonstrated to capture expected loading mechanisms of support at an unparalleled resolution and accuracy.
- Low-cost per sensor offers an economical solution for monitoring a cluster of instrumented support specimens.
- The optical solution can be realized as a novel monitoring tool with the capability to "see" and "sense" into the ground ahead of the excavation face

- An optical sensing technique has been developed for rock bolt and forepole support members (laboratory and *in situ*).
- The technique was demonstrated to capture expected loading mechanisms of support at an unparalleled resolution and accuracy.
- Low-cost per sensor offers an economical solution for monitoring a cluster of instrumented support specimens.
- The optical solution can be realized as a novel monitoring tool with the capability to "see" and "sense" into the ground ahead of the excavation face

- An optical sensing technique has been developed for rock bolt and forepole support members (laboratory and *in situ*).
- The technique was demonstrated to capture expected loading mechanisms of support at an unparalleled resolution and accuracy.
- Low-cost per sensor offers an economical solution for monitoring a cluster of instrumented support specimens.
- The optical solution can be realized as a novel monitoring tool with the capability to "see" and "sense" into the ground ahead of the excavation face

- An optical sensing technique has been developed for rock bolt and forepole support members (laboratory and *in situ*).
- The technique was demonstrated to capture expected loading mechanisms of support at an unparalleled resolution and accuracy.
- Low-cost per sensor offers an economical solution for monitoring a cluster of instrumented support specimens.
- The optical solution can be realized as a novel monitoring tool with the capability to "see" and "sense" into the ground ahead of the excavation face

Acknowledgments

- Co-supervision of Dr. Nicholas Vlachopoulos & Dr. Mark S. Diederichs
- Technical support and guidance provided Dr. Andrew J. Hyett of YieldPoint Inc.
- Current and Past Queen's Geomechanis Group: Special thanks to <u>Dr.</u> Jeffrey Oke & Ioannis Vazaios
- The Department of Geological Sciences and Geological Engineering at Queen's University
- The Department of Civil Engineering at the Royal Military College of Canada
- Funding support provided by: Natural Sciences and Engineering Resource Council of Canada (NSERC), Department of National Defence (DND), & Nuclear Waste Management Organization (NWMO)

The Application of Distributed Optical Sensing for Monitoring Support in Underground Excavations

Bradley J. Forbes

Thank You

