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A Constitutive Law for Bond Failure of
Fully-grouted Cable Bolts Using a
Modified Hoek Cell
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A series of pull tests were performed using fully-grouted seven-wire strand
cable, in which the confining pressure at the outside of the cement annulus was
maintained constant using a modified Hoek cell. The bond strength was shown
to increase with confining pressure. The associated radial displacements at the
outside of the cement annulus were measured by two sets of diametrically
opposed strain gauge arms located at the midpoint of the test section. The
radial dilations decreased with confining pressure, so that at pressures corre-
sponding to high bond strengths, less than 20 um of radial deformation was
generated after 50 mm of axial displacement. Observations under the scanning
electron microscope revealed that the low dilations can be explained by the
occurrence of an “‘unscrewing” failure mechanism along the majority of the
test section. ’

The data were used to develop a frictional—dilational model for cable bolt
failure in both graphical and mathematical form. The latter is amemable to
implementation in numerical programs, and presents an opportunity to incor-
porate realistic cable bolt behaviour into numerical analyses.

From an operational perspective, the miniscule radial dilations induced by
bond failure, which are responsible for the generation of radial pressure at the
cable—grout interface and the development of frictional bond strength, explain
the sensitivity of the bond strength to (i) the grout quality, (i) the radial
stiffness of the borehole wall and (iii) mining-induced destressing.

NOMENCLATURE Grout properties

E, = Young’s modulus of the grout
vy = Poisson’s ratio of the grout

g, = compressive strength of the grout

¢, = internal angle of friction for the grout

7, = Mohr—Coulomb cohesion—intercept for the grout

ry =inner radius of cement annulus, i.e. nominal radius of cable
r, = outer radius of grout annulus

r.=radius for which radial fractures are open

L, = embedment length

L, =length of test section for which the grout flutes are sheared
L; = free length of the cable between test and anchor sections

A, = aparent cable—grout interface contact area Cable properties

p, =radial pressure at r =r, E_ =axial Young’s modulus of the cable

p, =radial pressure at r =r, v, =Poisson’s ratio of the cable, i.e. contraction during axial
Pp. = radial pressure at r =r, pull

7y = tangential stress in the grout annulus K. = radial stiffness of the cable

F, = axial load on cable C = torsional rigidity of cable

Q = component of axial force related to untwisting the cable [ = pitch length of the cable

u, = axial displacement at exit point hy = height of grout flutes

u, = radial displacement at r = r, o = angle of the pitch

u,; =radial displacement at r =r,
u,. =radial displacement at r = r,
8 = twist of cable -
k} = coefficients for cable bolt model ¢, = friction angle between grout and steel
¢’ = average coefficient of friction
v = dilation at cable-grout interface

Parameters for the cable—grout interface

TDepartn}ent of Mining Engineering, Queen’s University, Kingston, v, = dilation due to splitting
Ontario, (;anada K7L 3N6. ) v, = dilation due to splitting for p, =0
tNoranda Minerals Inc., GECO Division, Manatouwadge, Ontario, K, = radial stiffness of the cable-grout interface after splitting for

Canada. =0
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Fig. 1. Boundary conditions to the cable-bolt system. In operational practise this consists of the boreholg wall.‘In the
laboratory, previous workers have used pipes and concrete blocks. In this research a constant radial pressure is applied and
the dilations at the outside of the cement annulus were measured.

i =dilation angle of the cable-grout interface
k, = empirical constant describing pressure dependancy of radial
displacement at the cable-grout interface

Rock properties

E, = Young’s modulus of rock
v, = Poisson’s ratio of rock
K, = radial stiffness of the borehole wall

INTRODUCTION

The reinforcement of a rock mass using fully-grouted
cable bolts falls into the general classification of a load
transfer problem. As the basis of this problem, it is
necessary to investigate the mechanics of load transfer
between a single cable and the surrounding rock mass,
in order to determine the combination of bond strength
and embedment length required to most effectively
reinforce the rock mass, without reaching the tensile
strength of the cable (240-260 kN). During failure of
cable-reinforced ground, both stress redistribution and a
progressive deterioration of the rock mass quality may
adversely affect both the bond strength and the embed-
ment length available, potentially resulting in very poor
cable bolt performance. Thus, any attempt to model the
behaviour of a cable-reinforced rock mass must be based
on a fully inter-active analysis in which the behaviour of
the rock mass controls the bond strength of the cable
bolt as well as vice versa.

Cable bolt research, both in the laboratory and
field, has confirmed that the most prevalent mode of
failure for a cement-grouted seven-wire strand involves
frictional slip at the grout—cable interface. As the
axial displacement (u,) of the cable is increased, the
frictional resistance (F,) to pullout depends on the
interaction between radial pressure (p,) and radial
dilation (u,) at the grout-cable interface, which
themselves are controlled by factors such as:

(1) the material properties and mechanical be-
haviour of the grout annulus
(ii) the mechanical properties of the cable
(iii) the radial confinement applied at the outside of
the cement annulus.
Previous research has established that low
water:cement (w:c) grouts are associated with high

bond capacities [1, 2], and recent tests [3] have indicated
a significant difference between pull test results con-
ducted on grouted cables from different North American
manufacturers. Concerning the latter, to the authors’
knowledge, all laboratory cable pull tests have been
conducted in either confining pipes [4-7], concrete blocks
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Fig. 2. Cutaway section of the modified Hoek cell (MHC): (1) 15.2 mm

(0.6") seven-wire strand; (2) type 10 portland cement annulus; (3)

pressure vessel endcap; (4) specimen endcap; (5) 15 mm PVC tube for

debonding; (6) ABS pipe to support end of specimen and overcome

end-effects; (7) neoprene bladder; (8) cantilever strain gauge arms; (9)

high pressure electrical feedthrough; (10) high pressure fitting; (11)
pressure transducer.



HYETT et al.:

Fig. 3. Photograph of various components of the MHC.

[8,9] or the in situ rock mass [10, 11]; namely under a
constant radial stiffness boundary condition (Fig. 1).
Reichert et al. [2] and Hyett et al. [6] demonstrated that
a stiffer response and higher ultimate capacities were
obtained for tests conducted in pipes with higher radial
stiffness, and that, if the radial stiffness of the borehole
wall was considered, these could be correlated with in
situ tests. However, for all of these tests the confining
pressure and dilation induced by bond failure were not
monitored. This inhibited understanding of the mech-
anics of bond failure and the subsequent development of
a realistic constitutive law.

In general, the boundary condition at the borehole
wall can be conceptualized by the assumption of a spring
with radial stiffness K, = dp,/du,,, where dp, and du,, are
the changes in radial confining pressure and displace-
ment, respectively. The applied stiffness K, varies be-
tween zero for a cable bolt under constant radial
pressure to infinity in the case where no change in radial
dilation is allowed.

In the present test programme, all four test vari-
ables (F,, u,, p, and u,) were either controlled or
monitored for a series of laboratory cable pull tests
conducted in a triaxial Hoek cell. Ideally, the radial
pressure and dilation (p, and u,) should have been
measured/controlled at the cable-grout interface where
slip is actually occurring and frictional resistance to
pullout was mobilized. However, it would have been
virtually impossible to determine the radial pressure
and radial dilation generated there by direct instru-
mentation. As a practical compromise, a method was
adopted whereby measurements were made at the
outer surface of the grout annulus. Consequently, the
deformation behaviour determined related not to that of
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the cable—grout interface, but instead to that of the
complete grouted cable bolt, which comprises the cable,
grout annulus and the interface in between. Tests were
conduced at a range of confining pressures expected to
be representative of those that would be generated at the
borehole wall during operational cable bolt bond failure.

EXPERIMENTAL PROCEDURE

Modified Hoek cell (MHC)

A triaxial cell, henceforth referred to as the modified
Hoek cell (MHC), was designed, in which a series of
cable pull tests were to be conducted under a condition
of constant radial pressure (Fig. 2). The design was
fundamentally similar to that described by Hoek and
Franklin [12] which is widely used for the triaxial testing
of intact rock cylinders. The principal design modifi-
cations that were introduced are listed below:

(i) the body of the cell was elongated to 285 mm
to accomodate a 265 mm long rubber sealing
sleeve or bladder of 50.8 mm (2") i.d.

the bottom of the cell was machined solid and
the endcap omitted

an instrumentation collar was incorporated
behind the rubber bladder on which were
mounted two sets of diametrically opposed
cantilever strain gauge arms oriented perpen-
dicular to each other (Fig. 3), to monitor
dilation at the middle of the sample

wires were led out through a high pressure
feed-through within the cell body

the cell was only designed to operate at press-
ures up to 20 MPa, so that the clearance gap
could be designed with a lenient tolerance to
facilitate removal of the test specimen after
failure (see [12]).

(ii)
(iii)

(iv)
™)

The cell was proofed to 25 MPa, and a series of
calibrations were conducted on steel and aluminium
pipes with different 0.d.s to account for the effect of the
rubber bladder on the deformations measured by the
strain gauge arms. The final design was robust enough
to enable 40 tests to be conducted with a single bladder.
The most persistent problem involved the removal of the
failed specimen from the cell following a test.

Test sample preparation

Each pull test sample consisted of a 15.2 mm (0.6")
seven-wire strand cable with a tensile strength of
240260 kN or 24-26tonnes (ASTM A416), grouted
using a type 10 portland cement paste into two sections
of pipe: a lower 2” Sch. 80 steel pipe 550 mm in length;
and an upper 250 mm 2" Sch 80 PVC pipe (see [13] for
further details). The former is used to anchor the test

Table 1. Properties of cement paste for different w:c ratios

w:c ratio 6. (MPa) E, (GPa) vy ¢, () 7, (MPa)
0.30 79 18.6 0.2 27 18.9
0.40 58 12.1 0.2 22 15.5
0.50 45 93 0.2 20 11.5
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MTS stationary
head

125mm of constant _|
cable embedment
o Entry point
Pulling head / Rotation allowed
| Modified Hoek cell
250mm test section —
Base of MHC bolted
- to pulling head
Maximum of 25mm
of unbonded cable
) L
Exit point
Rotation limited

500mm fixed “anchor "
section of grouted cable

MTS actuator head

Pull rate = 0.3mm/s

Fig. 4. The pull test set-up. It is essentially identical to that used in [6].

specimen, while the latter serves only as a mould which
was removed prior to testing so enabling the MHC to
provide radial confinement to the outside of the grout
annulus. Samples were grouted using three different
w:c ratio cement pastes; 0.3, 0.4 and 0.5. The relevant
physical properties of these are presented in Table I.
They fall within the previous dataset presented by Hyett
et al. [14]. The samples were cured at >95% relative
humidity (ASTM C511) for 28 days.

Pull test procedure

The triaxial cell was incorporated into the modified
push test setup described and evaluated by Reichert [15).
This procedure is itself a derivative of the split-pipe pull
test developed by Fuller and Cox [4] which has since
become the accepted laboratory standard.

The complete experimental set-up is shown in Fig. 4.
For each cable pull test:

—the axial displacement (u,) was increased at a rate
of 0.3 mm/sec in a stiff MTS testing frame

—the axial pullout force (F,) applied by the testing
machine was monitored

—a prescribed pressure (p,) was maintained constant
(to within 0.1 MPa) in the triaxial cell

tImprovements in grout pump technology have enabled many mining
operations to routinely use grouts in the range 0.3-0.35 w:c for
cable bolt applications.
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—the radial dilation (#,,) was measured by cantilever
strain gauge arms within the triaxial cell.

To prevent the formation of transverse fractures, it
was necessary to axially constrain the grout annulus
using a specimen end cap (4 in Fig. 2) prior to the
application of the confining pressure. The base of the
MHC was bolted to the pulling head to prevent both
eccentric loading and rotation of the sample and cell
during testing. Consequently, rotation was prevented
during the test at all points except the free end of the
cable (Fig. 4). All deformations associated with the test
frame and head attachments were subtracted so that the
axial deformation is exactly that at the exit point.

The test programme (Table 2) was intended to
investigate the effect of two parameters:

(i) the confining pressure applied by the MHC
(ii) the w:c cement ratio of the cement paste.

The embedment length, 250 mm, was comparable to
that used by previous workers [1, 4, 8]. At the start of the
test 25 mm of free cable (L, in Fig. 4) existed between the
test section and the anchor section. A decision was made
to conduct more tests at a 0.3 w:c ratio.t An average
of four tests were conducted at each combination of
parameters, and only highly circumspect results were
eliminated.

EXPERIMENTAL RESULTS

Failure always occurred by slip at the cable-grout
interface. A typical set of results for axial force and
radial dilation (0.3 w:c, 15 MPa confining pressure) are
presented in Fig. 5: the heavy line represents an average.
Average results for each combination of parameters are
presented in Fig. 6. Overall, the radial displacement—
axial displacement data were less consistent than the
axial load-axial displacement data. This was inevitable
because the measurements were made at the outer
surface of a fractured cement annulus, transected by
radial fractures and comprising distinct wedges able to
move independently of one another during a test. Never-
theless, distinct trends exist within the dataset. These are
most evident for the 0.3 w:c ratio results for which more
tests were performed.

Influence of confining pressure

The most obvious effect of confining pressure is to
increase the bond strength, especially for confining press-
ures below 10 MPa. The shape of the load—displacement
plots is also pressure dependent. For low confining
pressures, peak capacity was attained during the initial
10 mm of axial displacement, whereas for higher confi-
ning pressures it usually occurs after 40-50 mm. The
associated radial dilations decrease with confining press-
ure. At higher confining pressures, dilations in the range
10-20 pm, are approaching the resolution limit of the
cantilever strain gauge arms.

Influence of water:cement ratio
Higher bond strengths were attained for lower w:c
ratio grouts, the effect being most pronounced between
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Table 2. The complete test programme

w:c ratio I MPa 2MPa 3 MPa 5$MPa 10 MPa I5SMPa Varied MPa Total
0.30 3 5 3 3 4 2 20
0.40 2 3 4 4 13
0.50 3 4 3 10

0.3 and 0.4 w:c. However, at high confining pressures,
the shape of the pull curves changed with grout w:c
ratio. Results for a 0.3 w:c exhibited pronounced work
hardening, whereas those for a 0.5 w:c were almost
perfectly plastic. In fact, during the initial stages, the
bond strength for a 0.5 w:c ratio was higher than for a
0.4 w:c which was in turn higher than for a 0.3 w:c (see
Fig. 6). The effect of w:c ratio on radial dilation were
also surprising. Contrary to expectation, slightly higher
radial dilations occurred for weaker grouts (higher
w:c ratio). It had been anticipated that higher radial

200
Water : cement ratio : 0.3

Embedment length : 250 mm
Confining pressure : 15 MPa

160

N
S

80

Axial load, F, (kN)

40

20 30 40

Axial displacement, u, (mm)

0.06 T T
Water : cement ratio : 0.3
Embedment length : 250 mm
Confining pressure : 15 MPa
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Radial displacement, u,, (mm)
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Fig. 5. Typical data obtained from a MHC cable pull test: top, pull

force (F,) vs axial displacement (x, ); bottom, radial displacement (u)

versus axial displacement (u,). The heavy lines represents the average
of the individual test results.
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dilations would be generated by stronger grout flutes.
Both of these apparent anomalies can be explained by
the role of shrinkage during curing.

Relatively little quantitative data exist concerning
shrinkage due to curing of cement paste, especially con-
cerning the effect of w:c ratio. More is known for con-
cretes, for which the aggregate acts to reduce shrinkage.
Qualitatively, it is generally accepted that the shrinkage
strain is negligible for a 0.3 w:c ratio cement paste, but
increases with increasing w:c ratio. Laldji and Young
[20] consider the effect of shrinkage in their model for the
bond failure of concrete grouted ground anchors. They
give the following relation for the compressive stress
generated at the cable-grout interface due to shrinkage:

Ec(r% - ri)
= E "6
=D =) + 2 U +v) +ri(1 = vy)
N

where ¢, is the shrinkage strain.

For pull tests conducted in a borehole or pipe, grout
shrinkage will create an initial gap between the confine-
ment and the outer surface of the cement annulus.

INTERPRETATION OF THE EXPERIMENTAL
RESULTS

Failure mechanisms

There are three conceivable mechanisms by which
bond failure may occur during a pull test (Fig. 7):

(i) dilational slip accommodated by radial split-
ting
(ii) unscrewing
(iii) shear failure of the cement flutes.

(i) and (iii) are known to be important during the bond
failure of reinforcing bars in concrete [16-19). For cables
dilational slip associated with radial splitting is known
to dominate at very low p,. During tests confined by
transparent heat shrink [15], radial fractures which form
after 1-2mm of axial displacement, were observed to
dilate by 2-3 mm. Figure 8 presents results from two
MHC tests conducted at 1 MPa confining pressure. The
distinctive elbow in the dilation profile is thought to
correspond to a transition from unscrewing to dilational
slip, caused by the torque that builds up during the pull
test.

At slightly higher p, bond failure tends to occur by
either unscrewing or shear failure. Figure 9 shows a
series of scanning electron microscopic (SEM) micro-
graphs from a cable pull test specimen which has under-
gone bond failure while confined in a Sch. 80 aluminium
pipe [3]. Whereas shearing of the grout flutes is import-
ant near the exit point of the cable (i.e. the end prevented
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0



HYETT et al.:

Rotational slip (unscrewing)

Proximity to fixed end
High P /oc

Low Py /o,

Shear failure of flutes Dilational slip

Fig. 7. The three failure mechanisms for cable bolt bond failure C is
the torsional rigity of the cable, L; is the free length between the test
section and anchor point and o, is the UCS of the grout.

from rotating), 75 mm away the grout flutes are almost
completely undamaged. Thus, along the majority of the
test section bond failure occurs by unscrewing rather
than shear failure of the grout flutes: quite different from
a solid bolt or bar. Tests conducted in an Instron
rotational testing frame [3], revealed that the torsional
rigidity of 15.2 mm (0.6") seven-wire strand was approx.
16,000,000 N mm?, or 1-2 orders of magnitude less than
the corresponding value for a solid bar of the same
nominal diameter manufactured in the same material.
This, combined with the pronounced helical geometry of
the outer wires, is responsible for the different failure
mechanisms for grouted cables.

As further evidence of the importance of unscrewing,
immediately following a cable pull test conducted in
either the laboratory or the field, a sometimes violent
rotation of the specimen occurs as the load is released.
From geometric considerations the amount of rotation
should be:

27u,

{

where [ is the pitch length of the cable.t So for 50 mm
of axial displacement a 70° rotation should accompany
unloading. Although, the actual measured values are
usually 10-20° lower than this value, rotations in excess
of 50° do demonstrate the importance of unscrewing
during bond failure.

In practise, all three of the failure mechanisms out-
lined above occur concurrently. Thus, even at the highest
confining pressures when the role of dilation is most
constrained, the radial fractures that accommodate dila-
tional slip are always present.

0=

2

Progressive cable bolt bond failure
The load—displacement plots presented in Fig. 6

do basically confirm that the failure process can be
divided into four distinct stages. However, in previous

t219mm for the cable used in this research, though it may vary
from 192 to 232mm for different manufacturers. ASTM
A416 for uncoated seven-wire stress relieved steel strand for
prestressed concrete stipulates 189-253mm or 12-16 times the
nominal diameter,
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descriptions of progressive bond failure [6], the import-
ant role played by unscrewing was not fully appreciated.

Stage 1 (u, < I mm). The essentially linear response
that characterizes the initial stage of a cable pull test is
related to the axial stiffness of the cable, the elastic
properties of the grout and the properties of the interface
between the two. Figure 10 indicates that the initial
stiffness is sensitive to the confining pressure, as is the
onset of non-linearity in the load-displacement plot.
Both of these observations confirm that the bond, even
during this initial stage, is related to frictional-
mechanical rather than adhesional resistance.

Stage 2 (u, < I mm). Near the fixed end of the test
section, where the bond will begin to break first and
unscrewing is restricted, only limited slip can occur at the
grout—cable interface unless either (i) radial fracturing of
the grout annulus splits it into distinct wedges, which can
then be radially displaced to allow dilational slip, or (ii)
shear failure through the cement flutes occurs.

The initiation and stable propagation of one or both
of these mechanisms is responsible for the reduction of
axial stiffness and defines the onset and the extent of
stage 2.

Stage 2-stage 3 transition (splitting of the cement
annulus, u, = 1 mm). A pronounced change in stiffness,
often accompanied by a drop in capacity, and an audible
emission from the specimen, occurs after 1-2mm of
axial displacement. It is proposed that this corresponds
to splitting of the cement annulus. In some tests this
appears to have occurred instantaneously; in others the
fracturing was more progressive, either because individ-
ual fractures were propagating intermittently, or more
likely because different fractures become unstable at
slightly different axial displacements.

The splitting process was more unstable for higher
w:cratio grouts, and, because these are known to shrink
more during curing, the associated tensile tangential
stress may contribute to that required to split the cement
annulus. In some cases for a 0.5 w:c ratio, incipient
radial fractures were observed in the sample prior to
testing. After the cement annulus is fully split, the stored
elastic strain energy in the annulus due to shrinkage
must be released, and the individual grout wedges will
have a tendency to extend in the radial direction and
contract in the tangential direction, prematurely opening
the radial fractures. This effect can explain the high bond
strengths for higher w:c ratio grouts during the early
stages of the pull test (u, < 10 mm in Fig. 6).

Figure 11 shows details for three individual tests
conducted at different confining pressures. Notice the
jump in radial dilation associated with radial splitting,
and whereas, at high confining pressures this is
almost completely recovered, at low confining pressure
it is not.

Stage 3 (u, = 1-50 mm). Research has established that
stage 3 is the most critical part of the cable bolt bond
failure process, and that the associated failure mechan-
ism is highly sensitive to the radial confinement. For the
MHC tests, the frictional resistance to pullout must be
controlled by:
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Fig. 8. Results for specimens HP031-1 and HP033-1, for a 0.3 w:c ratio grout with a confining pressure of 1 MPa. A
pronounced elbow is observed in the dilation data at around 35 mm of axial pull. This is thought to correspond with a transition
from rotational to dilational slip.

(i) the frictional properties at the cable-grout
interface; and,

(if) how much stress is transferred through the
grout annulus, from the outer surface where
the confining pressure is maintained constant
to the cable—grout interface where cable slip is
actually occurring.

As will be outlined in the mathematical model presented
below, the work hardening exhibited during stage 3 of
the load—displacement plots can be explained by an
increase in the radial stress transferred through the
cement annulus as the wedges that com:prise it are
progressively forced apart, due to dilation at the cable—
grout interface.

For unscrewing failure during stage 3, the torque
generated in the length of cable between the test and
anchor sections progressively increases according to:

. C8 2nCy,
T+ L) I+ L)

where C is the torsional rigidity of the cable, /is the pitch
length of the cable and L; is the initial free length (the
length exists between the test section and where the cable
is gripped at the start of the test—in these tests 25.4 mm).
Note that for tests in which a significant free length
exists, or for a loosely wound cable with low C, less
torque will develop for a given », and the cable will be
able to unscrew even at the exit point. Hence, less
shearing of the grout flutes and less dilation will result
in less work hardening during stage 3 (i.e. a nearly
perfect plastic response, e.g. see the test results in [8] and
[10]) and consequently, lower bond strengths: similarly,
for loosely wound cables with a low C.

Stage 4 (u, > 50mm). The ultimate capacity and maxi-
mum radial dilation are usually attained after 40 or

T

(€)
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50 mm of axial displacement. Thereafter, the dilation
recorded by the strain gauge arms does not continue to
increase.

MODELS FOR CABLE BOLT FAILURE

Instinctively, it may seem that the regular geometry of
a fully-grouted cable bolt should facilitate a mathemati-
cal approach. Indeed, Burns [21] presents an elastic
treatment of the splice joints within cable-reinforced
conveyor belts. He states that “‘a cable when pulled,

CONSTITUTIVE LAW FOR CABLE BOLTS 19

has a tendency to twist”, and proceeds to consider the
interaction between axial load and torque along the
embedded cable when it is pulled from an incompressible
elastic half space. Based on an analysis of the forces
generated as a fully-bonded cable is pulled, Tan [22]
also predicts the tendency for the cable to twist when
pulled.

If progressive bond failure at the grout—cable interface
is also considered, the problem becomes significantly
more involved. In certain ways it becomes similar to the
frictional shear failure of any irregular interface. Thus,

Fig. 9. Scanning elgctro_n micrographs for a specimen that has undergone bond failure in an aluminium pipe. Top, section
25 mm from the exit point of the test section; middle, detailed micrograph of the degradation and fracturing; bottom, same
flutes but at 75 mm from exit point.
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the contributions of Newland and Allely [23] for granu-
lar media, and Jaeger [24], Ladanyi and Archambault
[25] and Goodman {26] for rock joints provide guidance
and insight.

As stated by Saeb and Amadei [27], the mechanical
response of any rough interface to shear loading depends
most critically on the surface morphology, the strength
of the irregularities/asperities and the boundary con-
ditions applied normal to the surface. Goodman [26]
predicted that a joint shear test conducted under
restricted normal displacement conditions would result
in a higher shear strength than one conducted under
conditions of constant normal stress. Laboratory tests
by Leichnitz [28] and Archambault e al. [29] have
since confirmed this. Important recent developments
[27] in the rock joint literature have demonstrated
that an adequate representation of joint response
under any boundary conditions can be derived from tests
conducted under constant normal stress.

Although such comparisons are valuable, it is import-
ant not to oversimplify or distort the problem, in order
to force agreement between the mechanics of cable bolt
bond failure and apparently analogous problems. Cable
bolt bond failure is quite distinct from shear failure of
a rock joint, or even bond failure of deformed bars. In
fact, it is within these fundamental differences that many
of the answers to inadequate cable bolt performance are
to be found.

GRAPHICAL MODEL

Using the experimental results presented above, and
essentially following the approach taken for rock joints
by Goodman and Boyle [30] and Saeb and Amadei [27]
for rock joints, a series of response curves can be
constructed. Similar representations have been used by
Leichnitz [28] for rock joints and by Yazici and Kaiser
[31] for cable bolts.

In Fig. 12, the MHC test data for a 0.3 w:c ratio,
when plotted in quadrants 1 and 3 (Q1, Q3) has been

used to construct the appropriate response curves in
quadrants 2 and 4 (Q2, Q4). Notice that the axial load
has been retained rather than dividing by the appar-
ent contact area to obtain an axial shear stress. The
completed construction is shown in Fig. 13.

In quadrant 2:

(i) envelopes are shown for a 10 mm increment of
axial pull. The uppermost envelope represents
the change in peak capacity with confining
pressure. The curves for different axial dis-
placements lie over one another for low confi-
ning pressures indicating an almost perfect
plastic response, whereas at higher confining
pressures divergence of the curves is indicative
of work hardening behaviour;

(ii) though linear below 5 MPa, the effect of confi-
ning pressure on peak capacity decreases at
higher radial confining pressures. As discussed
below, if the pull force (F,) is divided by the
apparent contact area at the grout—cable inter-
face, the linear segment provides an estimate of
the average friction angle (¢ ') at the interface
along the test section.

In quadrant 4:

(iii) the line AB represents the radial deformation
of the intact annulus as the radial confining
pressure is applied (i.e. its slope is the radial
stiffness of the intact annulus);

the slope of the other curves, u, = 10, 20, 30, 40
and 50 mm, represents the radial stiffness of the
cable—bolt system (grout annulus, cable-grout
interface and cable) as the cable is progress-
ively pulled. The radial stiffness decreases with
axial displacement especially at low confining
pressures. For u, = 10 mm the radial stiffness
of the grout annulus is almost constant below
3 MPa and above 10 MPa: the former approxi-
mately corresponds to the radial stiffness of the

(iv)
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Fig. 12. Construction of response curves for #, = 10 mm using the MHC pull test results.

independent grout wedges bearing against the
cable-grout interface (i.e. the confining press-
ure is insufficient to close the radial fractures)
and the latter to the radial stiffness of the intact
annulus (i.e. the confining pressure is high
enough to close radial fractures). In between,
the stiffness progressively increases as the
radial fractures are closed by the confining
pressure.

The ability of the model to simulate bond strength for
radial stress paths associated with more realistic radial
boundary conditions likely to occur at the borehole wall
in operational practice will be evaluated below.

Cable bolt bond failure under constant radial stiffness

Hyett et al. [6] presented results from a series of cable
pull tests conducted under the condition of constant
radial stiffness in 2” Sch. 80 steel, aluminium and PVC
pipes (Fig. 14). For these, higher cable capacities were
observed for tests conducted in pipes of higher radial
stiffness. The graphical construction for the aluminium
tests is shown in Fig. 15, and results for all three
confinements are presented in Fig. 16. A comparison
between Figs 14 and 16, indicates a good agreement.

Cable bolt bond failure under variable radial pressure

Several MHC cable pull tests were conducted in
which the radial confining pressure was varied during

a single test. For HP034-5 the pressure was increased
from 1 MPa at the beginning of the test to 3, 5 and
10 MPa over 50 mm of axial displacement. For HP033-5
the pressure was successively reduced from 10 MPa at
the beginning of the test to 5, 3 and finally 1 MPa. The
axial load (F,) and radial displacement (u,,) responses
are indicated in Fig. 17. For both tests the model is
able to realistically simulate the cable bolt bond fail-
ure response (Fig. 18), and especially the variations in
radial displacement. For HP034-5, it overestimated the
load at higher confining pressures, especially 10 MPa
(u, > 40 mm), which may reflect its inability to properly
represent the accumulation of damage to the grout flutes
under different load paths. Further testing is required to
confirm this.

MATHEMATICAL MODEL

The graphical model and the constructions associ-
ated with using it provide insight into the frictional-
dilational mechanics of cable bolt bond failure. In the
next section, an equivalent mathematical model will
be introduced. The theory presented provides generality
through the inclusion of appropriate operational and
physical parameters (i.e. hole size, grout properties,
cable characteristics etc). The sign convention used is
shown in Fig. 19. The formulations presented are
suitable for implementation into numerical models,
so providing the potential to realistically simulate the
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Fig. 13. Complete cable bolt bond failure response curves for a 0.3 w:c ratio, opposite the MHC data from which they were
determined. Similar curves can be determined for a 0.4 and 0.5. Further details are explained in the text.

complex interaction between the rock mass surrounding
an excavation, not just for a single cable, but for an array
or pattern of cables designed to reinforce it.

The Cable—Grout Interface
Splitting of the cement annulus

As explained under the same subheading above, split-
ting of the grout annulus which occurs after approx.
1 mm of axial pull, has the potential to generate dilations
in the order of 10-20 pm. However, if a high radial
confining pressure is applied to the outside of the cement
annulus, an almost instantaneous reversal occurs.
Hence, at high confining pressures radial splitting may
result in no radial dilation. If the pressure-dependent
closure is assumed to be hyperbolic (as for the normal
closure of a mated rock joint) then the total dilation due
to splitting may be written as:

__ Pt
(Ko 0o+ p1)

where v, is the dilation generated by splitting when
P, =0, and K, represents the radial stiffness (MPa/mm)
of the cable—grout interface immediately following split-
ting, when p, = 0 also. Appropriate values for K, and v,
can be determined from the radial displacement-axial
displacement plots in Fig. 6. Using the 0.3 w:c ratio
results which are better constrained, at 1 MPa approx.

@)

vsp =0y

RMMS 32/1—C

10 um of radial displacement occurs due to splitting, for
3 MPa, 3 um and for higher confining pressures a negli-
gible amount. Based on these limited data, v, was
determined to be 35 pm and K, 30 MPa/mm. Since the
cable is not rigid, v, is related to the radial displacement
at the inner surface of the grout annulus (&) by:

Fov.
27r E,

_ Py
(Ky-vo+py)

14l

K

rc

Uy =0y ®)]
where the third and fourth terms describe the radial con-
traction of the cable directly related to the application of
p:, and the radial contraction caused by the Poisson
effect as the cable is pulled axially. In the former, X,
represents the radial stiffness of the cable itself perpen-
dicular to its axis. Assuming this section is solid, and not
composed of seven individual wires with limited contact
areas, will result in an over-estimation of K,.. Further-
more, cables from certain manufacturers appear to be
wrapped more tightly than those from others. In the
absence of reliable data, a value for K, of 2500 MPa/mm
was indirectly determined based on a best fit with the
MHC results. This is approximately an order of
magnitude less than if a value has been determined
based on the axial value of E, (140 GPa) for an equival-
ent bar of the same nominal diameter. The fourth term
in equation (5), describes the radial contraction at the
midpoint of the specimen (i.e. where the cantilever
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Fig. 14. Laboratory cable pull test results for a 0.3 w:c ratio grout confined using Sch. 80 steel, PVC pipes and aluminium.

strain gauge arms were located), assuming a linear for non-dilational unscrewing;
decrease of the pull out force along the test section

. . . t s
immediately after splitting. However, Stillborg [8] F,= M’i +Q (8)
performed tests on seven-wire strand cable, and sin &
determined its Poisson’s ratio to be low (s, =0.02); and, for shear failure of the cement flutes:
therefore:
P o ? F,=A4(n+p tand)g)' )]
1 0 1
Uy =0vy— —————— 6 : . . q: s
=T Kt ) K. (6) In which ¢, is the sliding friction between grout and

steel, ¢, is the internal angle of friction for grout and 1,
is the grout cohesion. Q is the component of the pull out
force required to untwist the free length of cable, which,
based on work considerations, is given by:

provides an acceptable approximation.

Friction coefficients

The axial force corresponding to the three failure

2
mechanisms described in the interpretation of results 0 =-—————-247r Cu, (10)
presented above are: Pu, + Ly)
for dilational slip, after splitting of the cement annulus; Now, it has been proposed, that, with the exception

of tests conducted at 1 MPa (u, > 30 mm), bond fail-
F,=A\p tan(¢,, + i) (7)  ure occurs predominantly by unscrewing, except over a



HYETT et al.: CONSTITUTIVE LAW FOR CABLE BOLTS 25
Axial displacement, ua( mm) Confining pressure, p, (MPa)
50 40 30 20 10 0 2 4 6 8§ 10 12 14 16
160 160
140
140
120
120
5 100 \ E
) RN 10mm 80 3
-] 80 \ < o
2 " =
3 \ <
40 \ 40
20
20 Ql
0 0
0.00 0.00 .
) " 10mm E
E 50mm =
g 002 0.02 E{
F g
g §
3 004 0.04 g
% &
3 5
=
g 0.06 0.06 g
& &
H 0.08
008 3 o Water:cement ratio: 0.3
Q 50 Q4 Embedment Length: 250 mm
+. L i 1 1 1
0.10
0.10 50 40 30 20 10 0 2 4 6 g8 10 12 14 16

Axial displacement, u a( mm)

Conlfining pressure, p, (MPa)

Fig. 15. Construction of the bond failure response for a pull test at 0.3 w:c ratio confined in a Sch. 80 aluminium pipe.
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restricted length near the fixed end where shear failure
of the cement flutes is important. Since the dilation
angles are so small (i <0.2°), the pull force component
related to dilational slip may be ignored, and using an
approach similar to [25], the axial pull out force may be
approximately written as:
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Axial displacement, u, ( mm)

Fig. 16. Predicted cable bolt bond failure response for Sch. 80
steel, aluminium and PVC pipes. These can be compared with the
corresponding pull test results in Fig. 14.

Ls Ls
Fa=’L‘C'A|(To+P|tan¢g)+<I‘Z)

Alpl tan ¢gs

X T
sin o

+QL, <L) (11
where L, is the length over which shear failure occurs.
The parentheses following Q imply that this term should
be added for cases in which any length of the test section,
however short, fails by unscrewing.

Presently, no rational basis, either theoretical or
experimental, exists for the determination of L. Pre-
sumably it must depend on an interplay between the
torque generated in the free section during bond fail-
ure and the strength of the cement flutes. To avoid the
problem, the concept of an average coefficient of fric-
tion (¢ ') over the whole test section is usually introduced
[31,32]. Assuming that untwisting is important, and
knowing that i is very small (<0.2°), then,

F,=Aptan¢’+Q 12

Figure 20(a) plots (F,— Q)/A, against p, [determined
using equation (45) below which is only strictly appli-
cable to the initial linear portion of each curve for
which the radial fractures in the grout annulus are
open] for different w:c ratios. The slope of the linear
portion provides an estimation of ¢’ for 0.3(23°),
0.4(17°) and 0.5(15°) w:c ratios. It is assumed to be



26 HYETT et al: CONSTITUTIVE LAW FOR CABLE BOLTS
150 0.050
i%_;wV“”“A’T
i - i 0.025
i |
i T, ’EE‘
o 0.000 =,
L =
E‘ !» 10 MPa =
= AN E
! S 0,025 §
2 RIS N g
s RS 5 MPa 1 =2
< 3 P o &
= IMPa i° b T R 2
% ! { -
” H
< sg T bey, -0.050 3
iy S
1 MPa N\, &
v
///\s—~r %k‘
25 S -0.075
oAb
| o e,
Water : cement ratio : 0.3 ] RO TN
Embedment length : 250 mm i Pt
0 1 I L i -0.100
0 10 20 30 40 50 60
Axial displacement, u, {(mm)
150 7 0.125
125 0.100
, g
100 0.075 &
&
z =
X o
- 5
i3
2 TS 0050 §
2 133
g K]
= o
= 2
3 °
ot —
< 50 0.025 .8
=]
&l
-~
25 04.000
Water : cement ratio : 0.3
Embedment length : 250 mm
0 . 1 { —0.025

10 20 30

40 50 60

Axial displacement, u, (mm)
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independent of confining pressure. Thus, the exper-
imentally determined values for ¢’ are significantly
higher than the coefficient of sliding friction for smooth
steel cement surfaces in contact (¢, = 10-12°) [20, 32].
If (11) is equated with (12), for a specified embedment
length, and given grout properties, the corresponding
values of L, can be back-analysed, as a function of p,
and grout w:c ratio. Doing this, L is found to increase
with confining pressure and to be 25-35mm at high
confining pressures [see Fig. 20(b)], which is compar-
able with the extent of shearing indicated by the
SEM micrographs (Fig. 9).

To reiterate, the average friction angle determined
from pull tests with 250 mm embedment length varies
from 23° for a 0.3 w:c ratio grout to 15° for a 0.5, and
is significantly higher than that for sliding between grout
and steel (10-12°). The difference can be explained by
shear failure of the cement flutes in the vicinity of the exit
point.

Dilation angles

Several workers have suggested that it should be
possible to relate the radial deformation induced during
bond failure to the geometry of the cable. Yazici and
Kaiser [31] used a relation of the form:

b= (1 —’i)kho (13)
6C

where 4, is given by the “height of the grout teeth”,
which should be approximately equal to the radius of the
outer wires (2.65 mm for a 15.8 mm seven-wire strand),
although in [31] a value of 0.2 mm was found to provide
a better fit to experimental results. Equation (13) implies
that bond failure is occurring by two mechanisms: (i)
dilation-slip and (ii) shearing of the cement flutes. % is
given by B/a,. A best fit value for B, back-analysed from
test results under constant radial stiffness, was found to
be 628, resulting in k values of 815 depending on the
compressive strength of the grout. In related research,
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Fig. 19. Terminology and sign convention used in the math-

ematical model. Compressive stresses are positive, and outward

directed displacements are positive. As throughout this paper, the

subscript 1 applies to the inner surface of the cement annulus and

the subscript 2 to the outer surface. The subscript ¢ is explained in
the text.

Ladanyi and Archambault [25] used a much lower value
of k for rock joints (k =4), while Chiu and Dight [33]
found an even lower value (k = 3) applicable to rock
socketed piles. Based on the discussion above, it is
proposed that this inconsistency arises because equation
(13), and the subsequent bond strength model (BSM)
developed in [31], fails to account for the involvement of
unscrewing during bond failure; this mechanism, and not
shear failure of the cement flutes, is responsible for the
very low dilation angles required to explain previous
experimental results. Recently, an attempt has been
made to incorporate the effect of rotation into the BSM
[34], by invoking lower dilations (i.e. lower k) if rotation
is allowed.

From Fig. 6, three important characteristics of
the radial displacements that were measured at the
mid-point of the test section are:

(i) an approximately linear increase with u,;
(ii) a decrease with p,
(iii) no significant change with grout quality.

Although the latter was not predicted, in retrospect, the
grout strength should only effect that portion of the
cable for which shear failure of the grout flutes occurred,
namely, the 25-50 mm closest to the fixed end. Since the
dilations were measured at the midpoint of the test
section, (iii) can be explained.

It is our experience, that the mechanisms responsible
for the dilation, and in particular the interplay between
dilation and unscrewing when the latter is dominant, are
so inadequately understood, and the input parameters
to such an analysis so poorly constrained, that the
best approach is to use the experimental data presented
above, to determine an empirical relation for radial
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displacement during bond failure. Based on observations
(i)—(iii) assume very simply:

k

Uy ==, = D +/(py) (14)

P
where k, is an empirical constant, determined by a best
fit to the experimental dilation data to be 0.012 MPa.
When u,= 1 mm (i.e. immediately following splitting)
the total radial dilation must be given by equation (6),
and hence f(p,) is simply the radial displacement due to
splitting. Therefore:
Py 14

K, (15)

ky
Uy =— (W, — DN +vy— ————
b ¢ Y+ (Ko v+ p1)
which is assumed to represent an average along the
whole embedment length.
As realized by Saeb and Amadei [27], an equation
of the form of (15) can be written as:

=(u,l—w)~K0-v0 (16)
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where, in the present analysis, w, which comprises
both the dilation due to shearing and that related to
the deformability of the cable in the radial direction,
is given by:

k, )4

w=uv+—(u—1)—

’ P K.

Equation (15) models the radial deformability of

the cable—grout interface after the cable has been pulled
by an amount u,. Its form is shown in Fig. 21.

am

Deformability matrix for the cable—grout interface during
bond failure

As u,, depends on both p, and u,, an incremental
formulation can be obtained by differentiating equation

(15)
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duyy u,‘(f_..(u 14— Kovd 1 ) @n
P Ky vo+p) K.
40 T
o 2 — i
&
=
a
g b |
g‘ i
]
g \
&0 '; Qe
40
0 | Tug =1 mmlo\:‘\:
0.00 0.02 004 006 008 0.0

Radial displacement - u_;, mm

Fi.g. 21. The form of equation (I15) (p, vs u, space). A similarity
with quadrant 4 (p, vs u,,) of the graphical method is immediately
obvious.
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and,

o,
ou,

_ 14
S o .
1 __.ua_ N —
i (Ko vo+p) K

Similarly, for the axial pull force [equation (12)]

OF, oF,
dF,=—| -d 2 - du, 23
a 6p| v P] + aua o, U ( )
where
oF, =A,tan ¢’ (24)
6p| Uy
and,
aF, 4n’L,C
e o 25
ou, |, P+ L) 23
Substituting dp, from equation (20) into (23), and
rearranging gives;
% - ‘?‘Fa . o (26)
aurl uy opy Uy 6url uy
QIE _ oF,| dp JF, @
aua ur | apl uy aua | 6“3 4

Combining equations (21), (22), (26) and (27) a differen-
tial formulation for the deformability of the cable joint
interface during bond failure is obtained;

dF, [Ki Ki|du,

dp, | K% Ki|du,
The matrix represents the tangent stiffness matrix for the
cable—grout interface and is in general asymmetric.

(28)

The Grout Annulus

Assuming that the cement annulus has fully split
after 1 mm of axial pull (i.e. at the end of stage 2), it
will thereafter be unable to support a tensile tangential
stress. Furthermore, the radial fractures will be free to
open or close, so that three possible states can be defined
(Fig. 22) depending on:

(i) the magnitude p, applied to the outer surface of
the grout annulus

(ii) the dilation induced by failure at the cable-
grout interface (u,,).

The former will act to close the radial fractures, so
forcing the annulus to behave more like a thick walled
hollow cylinder, whereas the latter will jack them apart
so causing the annulus to behave as a series of inde-
pendent wedges. Incrementally, this behaviour can be
written:

ap,
aurl

where p, and u,, have been designated as the independent
(i.e. control) variables. The corresponding changes in the
radial dilation measured at the outside of the annulus
are:

-dp, +

ur|

- du,,

P2

29

2

Ou,

-d,
ury pz + aurl

- duy,

P2

(39
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CASE 1 Fractures tightly closed

(e=n1;)

CASE 2 Fractures partially closed
(<)

CASE 3 Fractures fully open

r.=1,)

Fig. 22. The three possible states for the cement annulus: case 1,
fractures tightly closed; case 2, fractures partially open; case 3,
fractures fully open.

The form of the partial derivatives is dependent on
the state of the fractured cement annulus. Since they are
more easily derived, the two end member cases will be
discussed and then the intermediate case.

Case 1: (r,=r,) radial fractures are closed

Although, fully fractured, it will be assumed that the
grout annulus will behave identically to an intact hollow
cylinder while the tangential stresses are compressive.
Thus, using the plane strain elastic solution for a thick
wall hollow cylinder [35]:

E(r3—riu, 2(1 —vo)r3
” g(r2 ruy ( ‘g)r-Pzz 31)

T2+ D) (A= 2vri+13

v = 2(1 — V) Faly r(l + ve)
R G R S P E(ri—r?)

{ 401 — v )rir3

(A —zorier =2+ rﬂ}pz (32)

Differentiating (31) and (32):

| 2 —wr

sl T = 2vrierd 33)
o, Ej(ri—r)

= = 34
By |y~ Ut —2oriry O
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Ouyy
p;

_n(4+y,) 40— v, )rirs
TE(ri—r) (1= 2vr + 13

—[(1— 2vg)r§ + rf]} (35)

Ouy, 2(1 —v)rry

| [ S T (36)

Ouy |, (1— 2v)ri+r3
and, the four coefficients in (29) and (30) are obtained.

Case 3: (r.=r,) radial fractures are fully open
As described previously by Tepfers [16], Ladanyi [36]
and Yazici and Kaiser [31], for the case when the radial
fractures are fully open, the geometry reverts from a
thick walled hollow cylinder to a series of individual
grout wedges (Fig. 22). As outlined in [31], the solution
to the stresses for this problem gives:
n=p-, (37)
r
which describes a simple force balance between the stress
at the inner surface and outer surface of the wedge. As
explained by Yazici and Kaiser [31], although the corre-
sponding displacements are unbounded, the defor-
mation of the wedge (u, —u,) can be determined.
Rearranging this result gives:

a=vdr, m(ﬁ)
7

E

g

From (37) and (38), the partial derivatives in equations
(29) and (30) can be written as:

P (38)

Uy = Uy —

dp, _n,
b AN 39
dp, 39
il g (40)
Ouy p2
r
Ouyy _ (1=vpr, In("%) @1
0p2 Ur EE
] @)
Ouyy p2

and again the required coefficients are obtained.

Case 2: (r,<r.<ry) radial fractures are partially open

Considering next the transitional case. From equation
(34), for an annulus with radial fractures which are
tightly closed (case 1), an increase in u,, will cause an
increase in p,. Simultaneously the compressive hoop
stress in the annulus will decrease according to:

=P2’%"P1’% (01 —p)riri
R NE GRS
As explained above, for the radial fractures to be closed

ay > 0. Thus setting g, =0 in (43), a limit for p, can be
defined

43)

Gy

3
2ri
2 3
ri+r

= )23 (44)
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If p, exceeds this, r, will increase as the cement wedges
are pushed apart until r,=r, when

(45)

and the annulus is fully open. So, for p, within the range:
2r} r
ml’z <p < r—lpz
the grout annulus consists of an inner ring behaving as
a series of independent wedges for which:

(46)

r
pe="p, @7)

and an outer ring for which:

n Ey(r} — r2u, 20=3)rip e

T+ (=2 F+ 3 " (1= 2v)rivrl
The tangential stress in the outer ring (r. < r <r,) may
be written:
2 2 2,2

Pari=pere | (pe—porirs
= 2 2 49
=T ) @)
Setting 0y =0 at r =r, in (49) and using equation (47),
a quadratic in . is obtained:

G=pirri=2pyrirc+prri=0 (50)

Solving for r, and taking the root within the range
(ry<r,<r,) gives
2 2.2 2.2
ri—n\/piri—pir
rc=l72 2~ NN/ Par—pin 1)
np
Consider next the displacements. For the inner ring,
replacing u,, with u,, and r, with r, in equation (38), and

using equation (47):
(1 —v3r, 1n(ﬁ>
;
—p (52)

E

g

U = Uy —

For the outer ring, using thick wall cylinder theory [35]
to write u, in terms of p, and p,, and replacing p. using
47):
A+ v (1 =2v)r2+r3
Upe = P

™
E, ri—r?

~ 2 ~_v§)rcr§

Eg(r% _ rg P (53)
Equating these gives
+v)r (A =2v)ri+r3
F=u,— Egg r§g—r§ +(1—=v,)

21— v2yr s
x1n<%)}p,+¥é)_“—'zpz=o (54)

I Eg(r% - rg)
Next, replacing u,, with u,. and r, with r, in equation (32)
we have:
2(1 —vy)r.r, (1 +v,)
Up = 2 2 Upe 2 2
(0 —=2v)ri4r3 E,(ri—r))
" 41 — v )rir3
(A =2v,)ri+r3

—[(1—2vg)r§+r31}pz 53)
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which gives the displacement at the outside of the cement
annulus. Replacing u,. using (52) yields:

201 —wp)rer, " 200 —v)(d —vr.rr
(I=2v)ri+r3 " EJ(1—2vr2+rl]

< m(g)ﬂ r(1+v,) {400 —v,)rir}
n) ' T EGI—r) (= 2v)r 13

—[ —zvg)r%+rs]}pz=o

H=u,—

(56)

Now, functions F, G and H define the three dependent
variables (u,,, p, and r.) as implicit functions of the two
assigned independent variables (u,, and p,). From these,
using the method of Jacobians, the partial derivatives
required for (29) and (30) can be written as the following
third-order determinants:

a(F, G, H)
apl a(urz’pZ’rc)
—| === 57
o, 9(F.G.H) 7
6(ur2aplvru)
a(F, G, H)
ap[ a(urz’urlsrc)
=B 58
ouy |, 0(F,G, H) ¥
6(’42’/715":)
a(F, G, H)
5urz a(Pl,Pz,"c)
=1t 59
o: |, 3(F.G.H) &
a(p]aurbrc)
J(F,G,H)
aur2 a(plaull’rc)
=2le ) 60
dus|,, ~ 9(F.G. H) ©0
a(plauﬂ’rc)
where
OF JF @F
6ur2 apZ arc
OEGH _10G 0G Gl (1)
Oun,p2sre) | du, op, or
¢H 6_H JH
aurl apZ 8rc

The necessary partial derivatives are evaluated in the
Appendix.

Thereby, the coefficients for equations (29) and (30)
have been determined for all three cases. Concerning
these, several points are of interest:

(i) dp,/dp, calculated from equation (39) (case 3)
is greater than that calculated from equation
(33) (case 1), while that from equation (57)
(case 2) is intermediate. Thus for the same p,
more stress will be transferred through the
grout annulus in the case where the radial
fractures are open

(ii) for case 3, dp,/0u,, =0, and hence the incre-
mental change in p, is only dependent on the
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Axial load, F; (kN)

Axial load, F, (kN)

Axial load, Fa (kN)

HYETT et al: CONSTITUTIVE LAW FOR CABLE BOLTS

20 ' . s 010 .! z
Water:cement ratio: 0.3 : i
Embedment Length: 250 mm 15 MPa 1 MPa

; 008 -
: 10 MPa Water :cement ratio: 0.3
150 ﬁ ] Embedment Length: 250 mm
/ / E o 3MPa
00 b / i SMPa _| g 00
:—§ / 5MPa
)
3MPa g 00 —]
- «
50 . - , - = " 10 MPa
1 MPa N~
A 15 MPa
0 i i -0.02
0 10 20 30 40 50 0 10 20 30 40 50
Axial displacement, u, ( mm) Axial displacement, u, ( mm)
200
T T 0.10 T T
Water:cement ratio: 0.4 Water:cement ratio: 0.4
Embedment Length: 250 mm Embedment Length: 250 mm
008 [ E
150 — 2MPa
15 MPa E 0.06
// ~
_— 10 P2 5
100 [ : B § 0.04
/ = 5MPa
' 5MPa 3
: _g 0.02 A S—
50 4 o
2MPa ,,// _1OMPa |
0.00 i——
— 15 MPa
0 -0.02 :
0 10 20 30 40 50 0 10 20 30 40 50
Axial displacement, u, ( mm)
Axial displacement, u o ( mm)
200
! . 0.10 T T
Water:cement ratio: 0.5 Water:cement ratio: 0.5 2MPa
Embedment Length: 250 mm Embedment Length: 250 mm
: 0.08
150 E
E 0.06
10 MPa E
o - ] - 5MPa |
100 e -E 0.04 /
S
|
| _—
5MPa g 002
o
50 m %
v — 10 MPa
2 MPa 0.00 R
— -
0 L : 002 i i
0 10 20 30 40 50 0 10 20 30 40 50
Axial displacement, ug ( mm) Axial displacement, u, ( mm)

Fig. 23. Sirx?ulation of the MHC results using the mathematical model: top, 0.3 w:c ratio; middle, 0.4 w:c ratio; bottom, 0.5
w:c ratio; left, pull force (F,) vs axial displacement (u,); right, radial displacement (u,,) vs axial displacement (u,).
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Table 3. Model parameters for the pull test simulations in Fig. 23. Note that only ¢’, E, and ¢ change

w:c ratio vo (mm) K, (MPa/mm) k, (MPa) [ E, (GPa) vy € (u€)
0.30 0.035 30 0.012 23 18.6 0.2 0
0.40 0.035 30 0.012 18 12.1 0.2 400
0.50 0.035 30 0.012 15 9.3 0.2 1500

incremental change in p,, i.e. it is independent
on any radial dilation that occurs. In this case,
for p, maintained constant (i.e. as during the
MHC tests), p, must also remain constant. For
cases 2 and 3, dp,/0u, >0, so even for p,
maintained constant during a test, p, must
increase with dilation

(iii) according to equations (36) and (60), for cases
1 and 2 Ou,/0u, is always less than 1, in
other words some of the dilation induced at
the cable—grout interface must be, in effect
absorbed by the grout annulus: for case 3, as
long as p, is maintained constant, the grout
wedges will not deform and hence du,, /0u,, = 1
and the deformations at the inside and outside
of the annulus are equal.

Coupling of the Cable—Grout Interface to the Grout
Annulus

The stiffness relations for the cable-grout interface
given by equations (19) and (23) may be written:

dF, [Ki Ki|du,
pHE e

dp, | K} du,

Likewise, equations (29) and (30), which represent the

incremental behaviour of the cement annulus presuming

that p, and u, are the independent variables may be
dp,

written ast:
Ki K3
K3 Ki|du,

du, and dp, are common to both sets of equations and
at the inner surface of the grout annulus must be equal.
Thus substitution gives:

K{- K}

dp,

du, 63)

dF,=————_-dp,
K-k P
Ki-Ki— K, -Ki— K. K
+ X —KD) du, (64)
and,
K3 Ki+Ki-Ki— K3 K3
du, — 3 3 ‘I 4 2 3'd
? (Ki—K3) i
Ki K;
- ~du, (65
& —kp W ©
or in matrix form:
dr, K, K |dp,
durz_[Ka KA] du, 9

TTh_e matrix is not a stiffness matrix but a matrix which relates the
independent variables to the dependent variables. It can be re-
arranged to give a stiffness matrix.

which fully describes the incremental behaviour of bond
failure during an MHC test. Notice that p,, the pressure
maintained in the MHC, and u,, the displacement
applied to the cable by the testing machine, are indepen-
dent (i.e. control) variables: F,, the pull force, and u,,,
the radial dilation measured at the outer surface of the
cement annulus by the cantilever strain gauge arms in
the MHC, are dependent variables.

Using equation (66) the pull test results presented
above can be simulated. Figure 23 shows the calcu-
lated F, — u, and u, — u, responses for tests conducted
at constant confining pressures, for 0.3, 0.4 and 0.5
w:c ratio grouts. The parameters for grout annulus
are listed in Table 3. The empirical cable—grout inter-
face parameters (¢', K, k,) have been determined using
a best fit to the MHC data at u,=1mm and u, =
50mm. In between, the shape of the pull curves is
controlled by the analytical solution to the incremental
behaviour of the fractured cement annulus as the
wedges are forced apart by dilation at the cable-
grout interface. Comparing Fig. 23 with Fig. 6, the
agreement is relatively good.

Figure 24 shows how r, varies for the 0.3 tests.
Notice that:

(i) for 1 MPa the annulus if forced open (r.=r,)
as soon as it splits and hence according to
equation (31), because p, is maintained con-
stant, p, remains constant and the only increase
in F, is related to the work done in untwisting
the free length of cable

25

1 MPa|

20

L(mm)

10

5 1 1 ] L
0 10 20 30
Axial displacement, u, ( mm)

Fig. 24. r. vs u, using the mathematical simulation of the MHC cable

pull tests for 0.3 w:c ratio. For p, =1 MPa the annulus is fully open

after splitting; for p, = 3 and 5 MPa it opens fully during the pull test;

for p, = 10 and 15 MPa it remains partially closed after 50 mm of axial
displacement.
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Fig. 25. Simulation using the mathematical model of the MHC cable pull tests under variable radial confining pressure (p,).
See Fig. 17 for comparison.
(ii) for 3 and 5 MPa the annulus is initially closed dp,  E (68)

(r,=r,) but is progressively forced open until
fully open at 7 and 20 mm respectively. During
the process p, increases and the pull curve
progressively rolls over

for 10 and 15 MPa the dilation at the cable—
grout interface is insufficient to fully open
the annulus during the pull test. Hence the
load-displacement curves do not roll over
completely, and after S0 mm of axial pull
Py <p,-ry/r; and the increase in pullout ca-
pacity (F,), which depends on confining press-
ure, is less. This effect also accounts for the
non-linearity in Q2 of Fig. 13.

(iif)

The pull test simulations for 0.4 and 0.5 w:c ratios,
which are also shown in Fig. 23, indicate that the model
is able to account for changes in grout quality. Its ability
to simulate cable bolt failure under different boundary
conditions will be evaluated next.

Cable bolt failure under variable radial confining pressure

Figure 25 shows the model simulation of the tests
for which the confining pressure was varied. The
cable system parameters are identical to those listed
in Table 3 for a 0.3 w:c ratio grout. The results
are essentially identical to those obtained using the
graphical method (Fig. 17) and show a reasonably
good agreement with the limited experimental data
(Fig. 15). However, as with the graphical method,
reservations exist concerning the modelling of path
dependent effects.

Coupling to the Borehole Wall

Assuming a linear material, the response of the
borehole wall can be written:

dp, =K. - du, 67)

where K, is the radial stiffness of the borehole wall. For
plane strain

T du, (+0)n

where E, and v, are the elastic properties of the rock
surrounding the borehole. Combining equations (64)
and (67) gives:

{ KKK
dFm—<(1 -K;K,)+K2>dua

The coefficient is the tangent axial stiffness for bond
failure under a condition of constant radial stiffness.

(69)

Cable bolt failure under constant radial stiffness

Figure 26 shows model simulations, using equation
(69) for values of K, corresponding to Sch. 80 steel,
aluminium and PVC. The cable bolt system parameters
are the same as those listed in Table 3 for a 0.3 w:c
ratio grout. Comparing the model predictions with

200 T T ¥ T

160 }‘ ; i H i

120 |

Axial load, Fa (kN)

g0 |-

40 .

0 1 1 . S 1
0 10 20 30 40 50

Axial displacement, u, ( mm)

Fig. 26. Simulation using the mathematical model of cable pull test
results conducted under constant radial stiffness boundary conditions
in steel, aluminium and PVC Pipes.
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the experimental results in Fig. 16 indicates a good
agreement.

DISCUSSION

Cable pull tests conducted using a modified Hoek cell
confirm that cable bolt bond strength is related to
frictional rather than adhesional resistance. After 50 mm
of axial displacement, the radial dilations measured at
the midpoint of the test section are miniscule—decreas-
ing from approx. 0.15mm for 1 MPa radial confining
pressure, to 0.02mm for 15 MPa. SEM micrographs
reveal that shearing of the grout flutes only occurred
within 75 mm of the exit point. The only viable expla-
nation is that, along the majority of the test section,
failure involves unscrewing of the cable from the cement
annulus. This type of failure mechanism is due to the
helical form and low torsional rigidity of a seven-wire
strand, and it distinguishes the mechanical behaviour of
cable bolt bond failure from that of a solid deformed
bar.

The data have been used to develop a model for the
frictional—dilational behaviour of a fully-grouted cable
bolt during bond failure. This has been presented in both
graphical and mathematical form. The latter is amenable
to implementation into numerical analyses, such as finite
element, finite difference and discrete element computer
programs. The ability of both models to simulate tests
under constant radial confining pressure, tests under
constant radial stiffness boundary conditions and tests
for which the radial confining pressure was varied has
been demonstrated. For the latter, the correlation was
only moderate, perhaps because an implicit assumption
of the model is that the bond strength is independent of
load path. This may not be true, because the contri-
bution of different failure mechanisms is pressure depen-
dent, and hence the amount of unscrewing versus
shearing of the cement flutes, and the amount of damage
to the grout flutes, will depend on the load path.
However, the mathematical model does provide an
opportunity, once implemented in a numerical program,
to realistically simulate the interaction between the rock
mass adjacent to an excavation and an array or pattern
of cables designed to reinforce it.

From an operational perspective, the results and
observations explain why grouted cable is susceptible to
bond failure, and in particular costly dilution due to
unravelling, sluffing or peeling of hanging walls. Since
the bond strength is frictional, it depends on the pressure
generated at the cable-grout interface, which in turn
depends on the reaction force generated at the borehole
wall caused by dilation during bond failure. For high
bond strengths, this dilation is in the order of 20 um, so
that if for any reason:

—less dilation is generated at the cable-grout interface
(due to a low torsional rigidity of cables from
different manufactures)

—the dilation is absorbed by the grout annulus, either
because the grout has a low modulus, has voids or
an empty breather tube
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—the borehole wall is compliant, perhaps because
the wall rock is compliant or fractured, or the
immediate wall has been damaged due to drilling
or is coated with drill tailings

—the borehole wall relaxes due to mining induced
destressing

—some combination of all of the aforementioned

the reaction force will not develop and the resultant
bond strength will be low. Since the cable bond strength
is sensitive to such small radial dilations and minesite
quality control is so difficult to ensure, inconsistent or
inadequate cable performance may be unavoidable. In
fact, the only consistent feature for instances of failures
in cable bolted ground, is that the bond strength mobi-
lized is never sufficient to rupture the cable in tension. Of
course, in those instances where the bond strength was
higher the ground is less likely to fail, and consequently
instances where the cable support system was effective
are less apparent. For many mining applications, par-
ticularly those related to dilution control in open stop-
ing, the solution to this problem is to force higher
radial dilations using modified cable geometries, such as
Birdcage, Nutcase or Garford Bulb cable bolts.

Acknowledgements—This research was funded under the MRD
sponsored project: “Support of Underground Excavations in Hard
Rock”. Dr Evert Hoek provided valuable advice on the initial design
stage. Delbert Adams modified and machined the Hoek cell. Various
colleagues, most notably Steve Dube and Mark Deiderichs, have
improved the work through their discussion and criticism.

Accepted for publication 13 July 1994.

REFERENCES

. Goris J. M. Laboratory evaluation of cable bolt supports. 92nd
Annual General Meeting of the CIM, Ottawa, Canada, May (1990).

. Reichert R. D., Bawden W. F. and Hyett A. J. Evaluation of
design bond strength for fully grouted cable bolts. Bull. Can. Inst.
Min. Metall. 85, 110-118 (1992).

. Desgagnes A. C. An investigation of the mechanics of cable bolt
failure. B.Sc. thesis, Queen’s University at Kingston, Ontario,
Canada (1993).

4. Fuller P. G. and Cox R. H. T. Mechanics of load transfer from steel
tendons to cement based grout. Proc. 5th Aust. Conf. on the
Mechanics of Structures and Materials, Melbourne, pp. 189-203
(1975).

. Goris J. M. Laboratory evaluation of cable bolt supports. USBM
Report of Investigations 9308. (1990).

6. Hyett A.J., Bawden W. F. and Reichert R. D. The effect of rock
mass confinement on the bond strength of fully grouted cable
bolts. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 29, 503-524
(1992).

7. Hassani F. P., Mitri H. S., Khan U. H. and Rajaie H. Experimen-
tal and numerical studies of the cable bolt support systems. In
Rock Support in Mining and Underground Construction (Edited
by Kaiser P. K. and McCreath D. R.), pp. 411-417. Balkema,
Ontario (1992).

8. Stillborg B. Experimental investigation of steel cables for rock
reinforcement in hard rock. Ph.D. thesis, University of Lulea
(1984).

. Rajaie H. Experimental and numerical investigations of cable bolt
support systems. Ph.D. thesis, McGill University, Montreal,
Canada (1990).

10. Potvin Y., Milne D. and Gendron A. Cable bolt research project—
status report. NTC internal report (1989).

. Bawden W. F., Hyett A. J. and Lausch P. An experimental
procedure for the in situ testing of cable bolts. /nt. J. Rock Mech.
Min. Sci. & Geomech. Abstr. 29, 525-533 (1992).

]

w

w

=]



20.
21.

22.

23.
24,

25.

26.
27.

28.

29.

30.

31
32.

33.

34.

3s.
36.

HYETT et al.:

. Hoek E. and Franklin J. A. Simple triaxial cell for field or

laboratory testing of rock. Trans. Inst. Min. Metall. 17, 22-26
(1968).

. MacSporran G. R. An empirical investigation into the effects of

mione induced stress change on standard cable bolt capacity.
M.Sc. thesis, Queen’s University, Kingston, Ontario, Canada
(1992).

. Hyett A. J., Bawden W. F. and Coulson A. L. Physical and

mechanical properties of normal Portland cement pertaining
to fully grouted cable bolts. In Rock Support in Mining and
Underground Construction (Edited by Kaiser P. K. and
McCreath D. R.) (1992).

. Reichert R. D. A laboratory and field investigation of the major

factors influencing the bond capacity of grouted cable bolts. M.Sc.
thesis, Queen’s University, Kingston, Ontario, Canada (1990).

. Tepfers R. Cracking of concrete cover along anchored deformed

reinforcing bars. Mag. Concr. Res. 31, 3-12 (1976).

. Bazant Z. P. and Sener S. Size effects in pullout tests. ACI Mater.

JI 8, 347-351 (1988).

. Lutz L. and Gergely P. Mechanics of bond and slip of deformed

bars in concrete. ACI J. 64, 711-720 (1967).

. Gambrova P. G., Rosati G. P. and Zasso B. Steel-to-concrete

bond after concrete splitting: test results. Mater. Str. RILEM 22,
35-47 (1989).

Laldji S. and Young A. G. Bond between steel strand and cement
grout in ground anchorages. Mag. Concr. Res. 40, 90-98 (1983).
Burns S. M. Mechanics of load transfer in cable-reinforced
materials. Ph.D. thesis, University of Illinois, Chicago, IL (1992).
Tan R. A load—displacement relation for single 7-wire strand cable
bolts and its implementation into FLAC and UDEC. Ph.D. thesis,
Queen’s University, Kingston, Ontario, Canada (1994).
Newland P. L. and Allely B. H. Volume changes in drained triaxial
tests on granular media. Geotechnique 7, 17-34 (1957).

Jaeger J. C. Friction of rocks and stability of rock slopes.
Geotechnique 21, 97-134 (1971).

Ladanyi B. and Archambault G. Simulation of shear behaviour of
a jointed rock mass. Proc. 11th Symp. on Rock. Mech., pp. 105-125
(1970).

Goodman R. E. Methods of Geological Engineering in Discontinu-
ous rock. West, St Paul, MN (1976).

Saeb S. and Amadei B. Modelling rock joints under shear and
normal loading Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 29,
267-278 (1983).

Leichnitz W. Mechanical properties of rock joints. Int. J. Rock
Mech. Min. Sci. & Geomech. Abstr. 22, 313-322 (1985).
Archambault G., Fortin M., Gill D. E., Aubertin M. and Ladanyi
B. Experimental investigation of an algorithm simulating the effect
of variable normal stiffness on discontinuity shear strength. Proc.
Int. Conf. on Rock Joint, Loen, Norway, pp. 141-148 (1990).
Goodman R. and Boyle W. Non-linear analysis for calculating the
support of a b lock with dilatant joint surfaces. Presented at 34th
Geomechanics Colloguium, Salzburg, Austria (1985).

Yazici S. and Kaiser P. K. Bond strength of grouted cables. Int.
J. Rock Mech. Min. Sci. & Geomech. Abstr. 29, 279-292 (1992).
Kaiser P. K., Yazici S. and Nose J. Effect of stress change on the
bond strength of fully grouted cables. Ins. J. Rock Mech. Min. Sci.
& Geomech. Abstr. 29, 293-306 (1992).

Chiu H. K. and Dight P. M. Prediction of the performance of
rock-socketed side-resistance only piles using profiles. Int. J. Rock
Mech. Min. Sci. & Geomech. Abstr. 20, 21-32 (1983).
Deiderichs M. S., Pieterse E., Nose J. and Kaiser P. K. A model
for evaluating cable bolt bond strength: an update. EUROCK 93,
Portugal (1993).

Popov E. P. Mechanics of materials. Prentice-Hall, Englewood
Cliffs, NJ (1978).

Ladanyi B. A lower bound solution for bursting of thick-walled
cylinders of rock under internal and external pressures. Structures
et Comportement Mechanique des Geomateriaux, Colloque Rene
Houpert, Nancy (1992).

APPENDIX
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